High Frame Rate 3-D Ultrasound Imaging Using Separable Beamforming
نویسندگان
چکیده
Recently, there has been great interest in 3-D ultrasound imaging, but power constraints have precluded practical implementation of high-resolution and highframe-rate 3-D ultrasound in handheld imaging platforms. In this paper, we propose a separable beamforming procedure for both 3-D synthetic aperture and plane wave systems that drastically reduces computational and hence power requirements. Separable beamforming approximates 2-D array beamforming for 3-D images through a series of beamforming operations on 1-D arrays. Our proposed method is based on a separable delay decomposition method that minimizes phase error. We show that the proposed separable synthetic aperture system achieves 19-fold complexity reduction and the proposed plane wave separable system achieves 12-fold complexity reduction compared to the corresponding non-separable beamforming baseline systems. Furthermore, we verify the performance of the fixed-point-precision separable beamforming and iterative delay calculation through Field II simulations. Our results M. Yang ( ) · S. Wei · C. Chakrabarti School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA e-mail: [email protected] S. Wei e-mail: [email protected] C. Chakrabarti e-mail: [email protected] R. Sampson · T. F. Wenisch Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA e-mail: [email protected] T. F. Wenisch e-mail: [email protected] show that both the synthetic aperture system and the plane wave system can produce images with the same quality as images generated by non-separable beamforming. We also briefly describe how the two types of separable beamformer can be implemented on a modified version of Sonic Millip3De, our recently proposed hardware accelerator for the digital front-end of a 3-D ultrasound system.
منابع مشابه
In Support of High Quality 3 - D Ultrasound Imaging for Hand - held Devices
Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications. In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultra...
متن کاملAdaptive beamforming in row-column addressed arrays for 3D ultrasound imaging
In recent years, to reduce the complexity of implementation, the use of 2D arrays with restricted row-column addressing has been considered for 3D ultrasound imaging. In this paper, two methods of adaptive beamforming based on the minimum variance method are represented in such a way that the computational load is much less than using the full adaptive beamforming method. In both proposed metho...
متن کاملSynthetic Transmit Aperture Method in Medical Ultrasonic Imaging
The work describes the use of a synthetic transmit aperture (STA) with a single element transmitting and all elements receiving in medical ultrasound imaging. STA technique is a novel approach to today’s commercial systems, where an image is acquired sequentially one image line at a time that puts a strict limit on the frame rate and the amount of data needed for high image quality. The STA ima...
متن کاملMulti-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging
The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer ar...
متن کاملCompact Beamformer Design with High Frame Rate for Ultrasound Imaging
In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing Systems
دوره 78 شماره
صفحات -
تاریخ انتشار 2015